Application of novel binary optimized machine learning models for monthly streamflow prediction

نویسندگان

چکیده

Abstract Accurate measurements of available water resources play a key role in achieving sustainable environment society. Precise river flow estimation is an essential task for optimal use hydropower generation, flood forecasting, and best utilization engineering. The current paper presents the development verification prediction abilities new hybrid extreme learning machine (ELM)-based models coupling with metaheuristic methods, e.g., Particle swarm optimization (PSO), Mayfly algorithm (MOA), Grey wolf (GWO), simulated annealing (SA) monthly streamflow prediction. Prediction precision standalone ELM model was compared two-phase optimized state-of-the-arts models, ELM–PSO, ELM–MOA, ELM–PSOGWO, ELM–SAMOA, respectively. Hydro-meteorological data acquired from Gorai Padma Hardinge Bridge stations at River Basin, northwestern Bangladesh, were utilized as inputs this study to employ form seven different input combinations. model’s performances are appraised using Nash–Sutcliffe efficiency, root-mean-square-error (RMSE), mean absolute error, percentage error determination coefficient. tested results both reported that ELM–SAMOA ELM–PSOGWO offered accuracy streamflows models. Based on local data, reduced RMSE ELM, by 31%, 27%, 19%, 14% station 29%, bridge station, testing stage, In contrast, based external improves 20%, 5.1%, 6.2%, 4.6% confirmed superiority over single model. overall suggest can be successfully applied modeling either or hydro-meteorological datasets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-driven models for monthly streamflow time series prediction

C. L. Wu and K. W. Chau* 2 Dept. of Civil and Structural Engineering, Hong Kong Polytechnic University, 3 Hung Hom, Kowloon, Hong Kong, People’s Republic of China 4 5 *Email: [email protected] 6 ABSTRACT 7 Data-driven techniques such as Auto-Regressive Moving Average (ARMA), K-Nearest-Neighbors (KNN), and 8 Artificial Neural Networks (ANN), are widely applied to hydrologic time series predi...

متن کامل

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Application of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation

Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...

متن کامل

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Water Science

سال: 2023

ISSN: ['2190-5495', '2190-5487']

DOI: https://doi.org/10.1007/s13201-023-01913-6